I'm trying to get a better understanding on how to create object detection models in Turi Create (for usage in CoreML). I'm trying to create a model that detects custom images I designed and printed myself. To avoid having to take a huge amount of photo's, I'm figured I'd use the one-shot-object-detection feature provided by Turi Create. So far so good. I feed the algorithm two starter images and it successfully generates the synthetic data set and creates a somewhat reliable model.
Now I'm wondering what happens when I want to add a third category. I could of course add a third starter image and run the code again, but this feels like 2/3th of the work is redundant...
Is there a way to continue training a previously trained model, or combine multiple models so I don't have to retrain my models from scratch every time I add a category? If not, any other ways to get this done (e.g. TensorFlow)?
Turi Create is rather limited in the options it offers for retraining (none, basically). If you want more control over the process, using a tool such as TensorFlow is the better choice.