I'm trying to convert the following SAS code in R to get the same result that I get from SAS. Here is the SAS code:
    DATA plants; 
    INPUT  sample $  treatmt $ y ; 
    cards; 
    1   trt1    6.426264755 
    1   trt1    6.95419631 
    1   trt1    6.64385619 
    1   trt2    7.348728154 
    1   trt2    6.247927513 
    1   trt2    6.491853096 
    2   trt1    2.807354922 
    2   trt1    2.584962501 
    2   trt1    3.584962501 
    2   trt2    3.906890596 
    2   trt2    3 
    2   trt2    3.459431619 
    3   trt1    2 
    3   trt1    4.321928095 
    3   trt1    3.459431619 
    3   trt2    3.807354922 
    3   trt2    3 
    3   trt2    2.807354922 
    4   trt1    0 
    4   trt1    0 
    4   trt1    0 
    4   trt2    0 
    4   trt2    0 
    4   trt2    0 
    ; 
    RUN; 
    PROC MIXED ASYCOV NOBOUND  DATA=plants ALPHA=0.05 method=ML; 
    CLASS sample treatmt; 
    MODEL  y = treatmt ; 
    RANDOM int treatmt/ subject=sample ; 
    RUN; 
I get the following covariance estimates from SAS:
Intercept sample ==> 5.5795 Treatmt sample ==> -0.08455 Residual ==> 0.3181
I tried the following in R, but I get different results.
s=as.factor(sample) 
lmer(y~ 1+treatmt+(1|treatmt:s),REML=FALSE) 
				
                        
I don't know if you'll be able to get the exact results from SAS to R, but I was able to get close by dealing with
contrastas outlined here :lmer for SAS PROC MIXED Users : page 6
dput :
Current Code :
Current Output :