I am trying to process a big ~100GB MD simulation trajectory. Following snippet of code is one of the methods of analysis code. I want to process my trajectory in chunks with size affordable with the available memory of the computer.
On memory profiling using memory_profiler, I found that on line 136 memory is allocated but not being free even after deleting the object in line 143. I also tried by replacing line 136 with list comprehension equivalent, but to gain anything out of it. I am not able to spot or think of any reason for such behavior. Hope, experts insight will help me resolve it. Thanks.
I am running this code on Ubuntu-16.04/CentOS 7 with Python 2.7.12 build using GCC 5.4.0.
I understand that without entire code, below output can not be reproduced. So, I feel sorry for not being able to share entire code scattered in different script files.
Line #    Mem usage    Increment   Line Contents
================================================
    33     51.3 MiB      0.0 MiB       @profile
    34                                 def convert_using_pytraj(self, trajIn):
    35     51.3 MiB      0.0 MiB           bonds_list = []
    36     51.3 MiB      0.0 MiB           angles_list = []
    37     51.3 MiB      0.0 MiB           torsions_list = []
    38                                     
    39     51.3 MiB      0.0 MiB           for k in sorted(self.tree.nodes.keys()):
    40     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0:
    41     51.3 MiB      0.0 MiB                   bonds_list.append([k-1, self.tree.nodes[k].a2-1])
    42     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0 and self.tree.nodes[k].a3 > 0:
    43     51.3 MiB      0.0 MiB                   angles_list.append([k-1, self.tree.nodes[k].a2 -1, self.tree.nodes[k].a3 -1])
    44     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0 and self.tree.nodes[k].a3 > 0 and self.tree.nodes[k].a4 > 0:
    45     51.3 MiB      0.0 MiB                   torsions_list.append([k-1, self.tree.nodes[k].a2 -1, self.tree.nodes[k].a3 -1, self.tree.nodes[k].a4 -1])
    46                                     
    47     51.3 MiB      0.0 MiB           n_atom = len(self.inputs['atoms'])
    48     51.3 MiB      0.0 MiB           pseudo_bonds = None 
    49     51.3 MiB      0.0 MiB           if len(self.inputs['pseudo']) % 2 == 0:
    50     51.3 MiB      0.0 MiB               v_tmp = []
    51     51.3 MiB      0.0 MiB               for i in range(0, len(self.inputs['pseudo']), 2):
    52                                             v_tmp.append((self.inputs['pseudo'][i], self.inputs['pseudo'][i+1]))
    53     51.3 MiB      0.0 MiB               if len(v_tmp) > 0:
    54                                             pseudo_bonds = list(v_tmp)
    55     51.4 MiB      0.1 MiB           logger.debug('bond_indices: %s\nangle_indices: %s\n dih_indices%s' % (bonds_list, angles_list, torsions_list))
    56     51.4 MiB      0.0 MiB           logger.debug('pseudo_bonds: %s' % str(pseudo_bonds))
    57     51.4 MiB      0.0 MiB           logger.debug(str((n_atom, n_atom-1, n_atom-2, n_atom-3, self.inputs['roots'])))
    58     51.4 MiB      0.0 MiB           trjs = []
    59     51.4 MiB      0.0 MiB           slices = []
    60                                     
    61     51.4 MiB      0.0 MiB           for tr1 in trajIn:
    62     51.4 MiB      0.0 MiB               trjs.append(tr1[0])
    63     51.4 MiB      0.0 MiB               if len(tr1) == 2:
    64                                             slices.append(tuple([0, tr1[1], 1]))
    65     51.4 MiB      0.0 MiB               elif len(tr1) == 3:
    66                                             slices.append(tuple([tr1[1]-1, tr1[2], 1]))
    67     51.4 MiB      0.0 MiB               elif len(tr1) == 4:
    68     51.4 MiB      0.0 MiB                   slices.append(tuple([tr1[1]-1, tr1[2], tr1[3]]))
    69     51.4 MiB      0.0 MiB           if slices:
    70     51.4 MiB      0.0 MiB               if len(slices) == len(trjs):
    71     54.3 MiB      2.8 MiB                   traj = pt.iterload(trjs, self.inputs['topoFile'], frame_slice=slices)
    72                                         else:
    73                                             raise Exception("Either all trajin should have slices or none")
    74                                     else:
    75                                         traj = pt.iterload(trjs, self.inputs['topoFile'])
    76     54.3 MiB      0.0 MiB           traj_frames_eff = traj.n_frames
    77     54.3 MiB      0.0 MiB           if not self.inputs['blockProcess']:
    78                                         block_size = traj.n_frames
    79                                     else:
    80     54.3 MiB      0.0 MiB               block_size = self.inputs['blockSize']
    81     54.3 MiB      0.0 MiB           logger.debug(str(("Total number of frames: %d" % traj.n_frames)))
    82     90.7 MiB     36.5 MiB           for block_id, block_start in enumerate(range(0, traj_frames_eff, block_size)):
    83     89.9 MiB     -0.8 MiB               if block_start + block_size <= traj_frames_eff:
    84     70.9 MiB    -19.0 MiB                   block_end = block_start + block_size
    85                                         else:
    86     89.9 MiB     19.0 MiB                   block_end = traj_frames_eff
    87     89.9 MiB      0.0 MiB               if block_id != 0:
    88     89.9 MiB      0.0 MiB                   if slices:
    89     89.9 MiB      0.0 MiB                       if len(slices) == len(trjs):
    90     89.9 MiB      0.0 MiB                           traj = pt.iterload(trjs, self.inputs['topoFile'], frame_slice=slices)
    91                                                 else:
    92                                                     raise Exception("Either all trajin should have slices or none")
    93                                             else:
    94                                                 traj = pt.iterload(trjs, self.inputs['topoFile'])       
    95     89.9 MiB      0.0 MiB               if block_end - block_start > 0:
    96     89.9 MiB      0.0 MiB                   logger.debug('Processing %s block %i Frames %i to %i' % (str(trajIn), block_id+1, block_start, block_end))
    97     89.9 MiB      0.0 MiB                   trj_working = traj[range(block_start, block_end)]
    98     90.2 MiB      0.3 MiB                   bonds_val = pt.distance(trj_working, bonds_list, dtype='ndarray')
    99     90.5 MiB      0.2 MiB                   angles_val = pt.angle(trj_working, angles_list, dtype='ndarray')
   100     90.7 MiB      0.2 MiB                   dihedrals_val = pt.dihedral(trj_working, torsions_list, dtype='ndarray')
   101     90.7 MiB      0.0 MiB                   trj_working = None
   102     90.7 MiB      0.0 MiB                   traj = None
   103     90.7 MiB      0.0 MiB                   if not self.inputs['useDegree']:
   104     90.7 MiB      0.0 MiB                       deg2rad = PI / 180.0
   105     90.7 MiB      0.0 MiB                       PI2 = 2 * PI
   106     90.7 MiB      0.0 MiB                       angles_val = angles_val * deg2rad
   107     90.7 MiB      0.0 MiB                       dihedrals_val = dihedrals_val * deg2rad
   108                                                 # move range (-PI, PI) -> (0.0, 2*PI) by adding 2*PI
   109     90.7 MiB      0.0 MiB                       for i in range(angles_val.shape[0]):
   110     90.7 MiB      0.0 MiB                           for j in range(angles_val.shape[1]):
   111     90.7 MiB      0.0 MiB                               if angles_val[i, j] < 0.0:
   112                                                             angles_val[i, j] += PI2
   113     90.7 MiB      0.0 MiB                       for i in range(dihedrals_val.shape[0]):
   114     90.7 MiB      0.0 MiB                           for j in range(dihedrals_val.shape[1]):
   115     90.7 MiB      0.0 MiB                               if dihedrals_val[i, j] < 0.0:
   116     90.7 MiB      0.0 MiB                                   dihedrals_val[i, j] += PI2
   117     90.7 MiB      0.0 MiB                   if self.inputs['usePhase']:
   118                                                 # Substract value of phase angle if phase
   119                                                 # if modified torsion becomes negative add 2*PI [rad] or 180 [deg]
   120                                                 # if modified torsion is positive substract and in deg substract 180
   121     90.7 MiB      0.0 MiB                       modFactor = 360.0 if self.inputs['useDegree'] else PI2
   122     90.7 MiB      0.0 MiB                       for k in range(0, dihedrals_val.shape[0]):                        
   123     90.7 MiB      0.0 MiB                           if (k != self.phase_defn[k + 1] - 1):
   124     90.7 MiB      0.0 MiB                               for fNo in range(dihedrals_val.shape[1]):
   125     90.7 MiB      0.0 MiB                                   dihedrals_val[k, fNo] -= dihedrals_val[self.phase_defn[k + 1] - 1, fNo]
   126     90.7 MiB      0.0 MiB                                   if (dihedrals_val[k, fNo] < 0.0):
   127     90.7 MiB      0.0 MiB                                       dihedrals_val[k, fNo] += modFactor
   128     90.7 MiB      0.0 MiB                                   if (self.inputs['useDegree']):
   129                                                                 dihedrals_val[k, fNo] -= 180.0
   130     90.7 MiB      0.0 MiB                   logger.debug(str((bonds_val.shape, type(bonds_val), bonds_val)))
   131     90.7 MiB      0.0 MiB                   if block_id==0:
   132     71.9 MiB    -18.8 MiB                       logger.debug("trying to create nc file for bonds")
   133     71.9 MiB      0.0 MiB                       trjBAT = trajIO.trjNetCdfBAT(self.trajOutFile, n_atom, n_atom-1,n_atom-2,n_atom-3, self.inputs['roots'], pseudo_bonds=pseudo_bonds)
   134     72.3 MiB      0.4 MiB                       trjBAT.create_dataset("0O.lig.internal from md2accent")
   135                             
   136     90.7 MiB     18.5 MiB                   frames_indices = np.arange(block_start+1, block_end+1, dtype=np.int32)
   137     90.7 MiB      0.0 MiB                   logger.debug("Writing BAT trajectory...\n")
   138     90.7 MiB      0.0 MiB                   t_bonds_val = np.transpose(bonds_val)
   139     90.7 MiB      0.0 MiB                   t_angles_val = np.transpose(angles_val)
   140     90.7 MiB      0.0 MiB                   t_dihedrals_val = np.transpose(dihedrals_val)
   141                                             #frm_o, frm_n = trjBAT.append_frames(frames_indices, t_bonds_val, t_angles_val, t_dihedrals_val)
   142                                             #logger.debug(str("%d frames appended to file successfully\n" % (frm_n - frm_o)))
   143     90.7 MiB      0.0 MiB                   del frames_indices
   144     90.7 MiB      0.0 MiB                   del t_bonds_val
   145     90.7 MiB      0.0 MiB                   del t_angles_val
   146     90.7 MiB      0.0 MiB                   del t_dihedrals_val
   147     90.7 MiB      0.0 MiB                   del bonds_val
   148     90.7 MiB      0.0 MiB                   del angles_val
   149     90.7 MiB      0.0 MiB                   del dihedrals_val
   150     90.7 MiB      0.0 MiB                   gc.collect()
   151                                         else:
   152                                             logger.critical("Exception: There are no frames to process..")
   153                                             raise Exception("There are no frames to process..")
   154     90.7 MiB      0.0 MiB               traj = None
   155     90.7 MiB      0.0 MiB           logger.debug("Processing input trajectory successful...")
   156     90.7 MiB      0.0 MiB           return(True)
				
                        
In my experience, garbage collection with external libraries written in C or similar can be quite hard (
numpyin your case).However, consider using the
gcmodule included in the standard library. (gc = garbage collection)Then you could try the following:
For further debugging look at these:
gc.get_objects()gc.get_stats()gc.set_debug()