I want to lemmatize using
from nltk import word_tokenize, sent_tokenize, pos_tag
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
lmtzr = WordNetLemmatizer()
POS = pos_tag(text)
def get_wordnet_pos(treebank_tag):
        #maps pos tag so lemmatizer understands
        from nltk.corpus import wordnet
        if treebank_tag.startswith('J'):
            return wordnet.ADJ
        elif treebank_tag.startswith('V'):
            return wordnet.VERB
        elif treebank_tag.startswith('N'):
            return wordnet.NOUN
        elif treebank_tag.startswith('R'):
            return wordnet.ADV
        else:
            return wordnet.NOUN
 lmtzr.lemmatize(text[i], get_wordnet_pos(POS[i][1]))
The issue is that the POS tagger gets that "procaspases" is 'NNS', but how do I convert NNS to wordnet, since as is "procaspases" continues to be "procaspaseS" even after the lemmatizer.
                        
NLTK takes care of most plurals, not just by deleting an ending 's.'
Output: cobbler ant woman boy need find binary hobby bus wolf