I'm trying to find class probabilities of new input vectors with support vector machines in R. Training the model shows no errors.
fit <-svm(device~.,data=dataframetrain,
    kernel="polynomial",probability=TRUE)
But predicting some input vector shows some errors.
predict(fit,dataframetest,probability=prob)
Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : 
contrasts can be applied only to factors with 2 or more levels
dataframetrain looks like:
> str(dataframetrain)
'data.frame':   24577 obs. of  5 variables:
 $ device   : Factor w/ 3 levels "mob","pc","tab": 1 1 1 1 1 1 1 1 1 1 ...
 $ geslacht : Factor w/ 2 levels "M","V": 1 1 1 1 1 1 1 1 1 1 ...
 $ leeftijd : num  77 67 67 66 64 64 63 61 61 58 ...
 $ invultijd: num  12 12 12 12 12 12 12 12 12 12 ...
 $ type     : Factor w/ 8 levels "A","B","C","D",..: 5 5 5 5 5 5 5 5 5 5 ...
and dataframetest looks like:
> str(dataframetest)
'data.frame':   8 obs. of  4 variables:
 $ geslacht : Factor w/ 1 level "M": 1 1 1 1 1 1 1 1
 $ leeftijd : num  20 60 30 25 36 52 145 25
 $ invultijd: num  6 12 2 5 6 8 69 7
 $ type     : Factor w/ 8 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8
I trained the model with 2 factors for 'geslacht' but sometime I have to predict data with only 1 factor of 'geslacht'. Is it maybe possible that the class probabilites can be predicted with a test set with only 1 factor of 'geslacht'?
I hope someone can help me!!
                        
Add another level (but not data) to
geslacht.or