**I have two objective function, I optimized them in matlab using genetic algorithm multi objective function as the follow f
unction [output]= multi_objective_function_2(input)**
x1 = input(1);
x2 = input(2);
x3 = input(3);
x4 = input(4);
x5 = input(5);
x6 = input(6);
x7 = input (7);
f1 = -(1.0125*x1 + 14.8125*x2 + 1.3113*x3 + 0.783*x4 + 10.365*x5 + 2.435*x6 + 1.78*x7);
f2 = -(3303*x1 + 7510*x2 + 41370*x3 + 1628*x4 + 23046*x5 + 5412*x6 + 58113*x7);
output = [f1 f2];
end
clear;
clc;
tic
numberOfVariables = 7;
A = [-1 0 0 0 0 0 0; 0 -1 0 0 0 0 0; 0 0 -1 0 0 0 0; 0 0 0 -1 0 0 0; 0 0 0 0 -1 0 0; 0 0 0 0 0 -1 0; 0 0 0 0 0 0 -1; 1715.78 5586.32 1654.93 1963.37 4414.64 6973.88 4416.31; -1.0125 -14.8125 -1.3113 -0.783 0 0 0];
b = [-3; -45; -2445; -71; -10402.5; -5201; -10402.5; 208000000; -3931];
Aeq = [1 1 1 1 0 0 0; 0 0 0 0 1 1 1];
beq = [26006.25; 26006.25];
LB = [0 0 0 0 0 0 0];
UB = [26006.25 26006.25 26006.25 26006.25 26006.25 26006.25 26006.25];
options = gaoptimset('PlotFcns',@gaplotpareto);
[x,fval,exitflag,output] = gamultiobj(@multi_objective_function_2,numberOfVariables,A,b,Aeq,beq,LB,UB,options);
disp(' x1 x2 x3 x4 x5 x6 x7 ');
disp(x)
disp(' F1 F2');
disp(fval)
disp(output)
fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
toc
I want solution which make each of the two objective function to be achieve 50% of the solutioى