I am given the locations of three points:
p1 = [1.0, 1.0, 1.0]
p2 = [1.0, 2.0, 1.0]
p3 = [1.0, 1.0, 2.0]
and their transformed counterparts:
p1_prime = [2.414213562373094,  5.732050807568877, 0.7320508075688767]
p2_prime = [2.7677669529663684, 6.665063509461097, 0.6650635094610956]
p3_prime = [2.7677669529663675, 5.665063509461096, 1.6650635094610962]
The affine transformation matrix is of the form
trans_mat = np.array([[…, …, …, …],
                      […, …, …, …],
                      […, …, …, …],
                      […, …, …, …]])
such that with
import numpy as np
def transform_pt(point, trans_mat):
    a  = np.array([point[0], point[1], point[2], 1])
    ap = np.dot(a, trans_mat)[:3]
    return [ap[0], ap[1], ap[2]]
you would get:
transform_pt(p1, trans_mat) == p1_prime
transform_pt(p2, trans_mat) == p2_prime
transform_pt(p3, trans_mat) == p3_prime
Assuming the transformation is homogeneous (consists of only rotations and translations), how can I determine this transformation matrix?
From a CAD program, I know the matrix is:
trans_mat = np.array([[0.866025403784, -0.353553390593, -0.353553390593, 0],
                      [0.353553390593,  0.933012701892, -0.066987298108, 0],
                      [0.353553390593, -0.066987298108,  0.933012701892, 0],
                      [0.841081377402,  5.219578794378,  0.219578794378, 1]])
I'd like to know how this can be found.
                        
Six points alone is not enough to uniquely determine the affine transformation. However, based on what you had asked in a question earlier (shortly before it was deleted) as well as your comment, it would seem that you are not merely looking for an affine transformation, but a homogeneous affine transformation.
This answer by robjohn provides the solution to the problem. Although it solves a more general problem with many points, the solution for 6 points can be found at the very bottom of the answer. I shall transcribe it here in a more programmer-friendly format:
For your sample inputs, this recovers the exact same matrix as what you had obtained from the CAD program: