I am processing binary images, and was previously using this code to find the largest area in the binary image:
# Use the hue value to convert to binary
thresh = 20
thresh, thresh_img = cv2.threshold(h, thresh, 255, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Finding Contours
# Use a copy of the image since findContours alters the image
contours, _ = cv2.findContours(thresh_img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#Extract the largest area
c = max(contours, key=cv2.contourArea)
This code isn't really doing what I need it to do, now I think it would better to extract the most central area in the binary image.
This is currently what the code is extracting, but I am hoping to get the central circle in the first binary image extracted.


There are several ways you define "most central." I chose to define it as the region with the closest distance to the point you're searching for. If the point is inside the region, then that distance will be zero.
I also chose to do this with a pixel-based approach rather than a polygon-based approach, like you're doing with findContours().
Here's a step-by-step breakdown of what this code is doing.
np.argwhere(), convert a true/false mask into an array of coordinates.Output: