Context: I've been benchmarking the difference between using invokedynamic and manually generating bytecode (this is in the context of deciding whether a compiler targeting the JVM should emit more verbose "traditional" bytecode or just an invokedynamic call with a clever bootstrap method). In doing this, it has been pretty straightforward to map bytecode into MethodHandles combinators that are at least as fast, with the exception of tableswitch.
Question: Is there a trick to mimic tableswitch using MethodHandle? I tried mimicking it with a jump table: using a constant MethodHandle[], indexing into that with arrayElementGetter, then calling the found handle with MethodHandles.invoker. However, that ended up being around 50% slower than the original bytecode when I ran it through JMH.
Here's the code for producing the method handle:
private static MethodHandle makeProductElement(Class<?> receiverClass, List<MethodHandle> getters) {
MethodHandle[] boxedGetters = getters
.stream()
.map(getter -> getter.asType(getter.type().changeReturnType(java.lang.Object.class)))
.toArray(MethodHandle[]::new);
MethodHandle getGetter = MethodHandles // (I)H
.arrayElementGetter(MethodHandle[].class)
.bindTo(boxedGetters);
MethodHandle invokeGetter = MethodHandles.permuteArguments( // (RH)O
MethodHandles.invoker(MethodType.methodType(java.lang.Object.class, receiverClass)),
MethodType.methodType(java.lang.Object.class, receiverClass, MethodHandle.class),
1,
0
);
return MethodHandles.filterArguments(invokeGetter, 1, getGetter);
}
Here's the initial bytecode (which I'm trying to replace with one invokedynamic call)
public java.lang.Object productElement(int);
descriptor: (I)Ljava/lang/Object;
flags: (0x0001) ACC_PUBLIC
Code:
stack=3, locals=3, args_size=2
0: iload_1
1: istore_2
2: iload_2
3: tableswitch { // 0 to 2
0: 28
1: 38
2: 45
default: 55
}
28: aload_0
29: invokevirtual #62 // Method i:()I
32: invokestatic #81 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
35: goto 67
38: aload_0
39: invokevirtual #65 // Method s:()Ljava/lang/String;
42: goto 67
45: aload_0
46: invokevirtual #68 // Method l:()J
49: invokestatic #85 // Method java/lang/Long.valueOf:(J)Ljava/lang/Long;
52: goto 67
55: new #87 // class java/lang/IndexOutOfBoundsException
58: dup
59: iload_1
60: invokestatic #93 // Method java/lang/Integer.toString:(I)Ljava/lang/String;
63: invokespecial #96 // Method java/lang/IndexOutOfBoundsException."<init>":(Ljava/lang/String;)V
66: athrow
67: areturn
The good thing about
invokedynamicis that it allows to postpone the decision, how to implement the operation to the actual runtime. This is the trick behindLambdaMetafactoryorStringConcatFactorywhich may return composed method handles, like in your example code, or dynamically generated code, at the particular implementation’s discretion.There’s even a combined approach possible, generate classes which you compose to an operation, e.g. settling on the already existing
LambdaMetafactory:This uses the
LambdaMetafactoryto generate aFunctioninstance for each getter, similar to equivalent method references. Then, an actual class calling the rightFunction’sapplymethod is instantiated and a method handle to itsgetmethod returned.This is a similar composition as your method handles, but with the reference implementation, no handles but fully materialized classes are used. I’d expect the composed handles and this approach to converge to the same performance for a very large number of invocations, but the materialized classes having a headstart for a medium number of invocations.
I added a first parameter
MethodHandles.Lookup lookupwhich should be thelookupobject received by the bootstrap method for theinvokedynamicinstruction. If used that way, the generated functions can access all methods the same way as the code containing theinvokedynamicinstruction, includingprivatemethods of that class.Alternatively, you can generate a class containing a real switch instruction yourself. Using the ASM library, it may look like:
This generates a new class with a
staticmethod containing thetableswitchinstruction and the invocations (as well as the boxing conversions we now have to do ourselves). Also, it has the necessary code to create and throw an exception for out-of-bounds values. After generating the class, it returns a handle to thatstaticmethod.