I'm having some issues with the pyghmi python library, which is used for sending IPMI commands with python scripts. My goal is to implement an HTTP API to send IPMI commands through HTTP requests.
I am already able to create a Session and send a few commands with the library, but if the Session remains IDLE for 30 seconds, it logged itself out. When the Session is logged out, I can't create a new one : I get an error "Session is logged out", or a deadlock.
How can I do if I want to have a server that is always up and create Session when it receives requests, if I can't create new Session when the previous one is logged out ?
What I've tried :
from pyghmi.ipmi import command
ipmi = command.Command(ip, user, passwd)
res = ipmi.get_power()
print(res)
# wait 30 seconds
res2 = ipmi.get_power() # get "Session logged out" error
ipmi2 = command.Command(ip, user, paswd) # Deadlock if wait < 30 seconds, else no error
res3 = ipmi2.get_power() # get "Session logged out" error
# Impossible to create new command.Command() Session, every command will give "logged out" error
The other problem is that I can't use the asynchronous way by giving an "onlogon callback" function in the command.Command() call, because I will need the callback return value in the caller and that's not possible with this sort of thread behavior.
Edit: I already tried some examples provided here but it's always one-time run scripts, whereas I'm looking for something that can stay "up" forever.
So I finally achieved a sort of solution. I emailed the Pyghmi's main contributor and he said that this lib was not suited for a multi- and reuseable- Session implementation (there is currently an open issue "Session reuse" on Pyghmi repository).
First "solution": use processes
My goal was to create an HTTP API. To avoid the Session timeout issue, I create a new Process (not Thread) for every new request. That works fine, but I did not keep this solution because it is to heavy and sockets consuming. It seems that by creating processes, the memory used by Pyghmi is not shared between processes (that's the goal of processes) so every Session utilisation is not a reuse but a creation.
Second "solution" : use Confluent
Confluent is a tool developed by Lenovo that allow to control hardware via HTTP. It uses a sort of patched version of Pyghmi as backend for IPMI calls. Confluent documentation here.
Once installed and configured on a server, Confluent worked well to control IPMI devices via HTTP. I packaged it in a Docker image along with an
ipmi_simulatorfor testing purposes : confluent dockerized.