I’m trying to layout model I train, but I don’t know how to do it. I mixed a few idea off the internet to do it but when I run it the result are completely wrong. The boxes don’t match at all even though during the training I have an F1 score of 0.924242 and an accuracy score of 0.948276. I trained my model on a 80 image dataset.
I have been trying to use the layoutlmv3 model I have trained to use locally on my school project
If any one can help, it would be amazing, I am a beginner in ml. TKS A LOT
The code i have been trying :
model_name = "checkpoint-1000"
model = AutoModelForTokenClassification.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
id2label = {0: 'key_achats_marchandises', 1: 'key_actif_circulant', 2: 'key_actif_immobilise', 3: 'key_ca', 4: 'key_charges_sociales', 5: 'key_date_cloture', 6: 'key_dette', 7: 'key_disponibilites', 8: 'key_dotations_immobilisations', 9: 'key_impots', 10: 'key_passif_circulant', 11: 'key_resultat_exploitations', 12: 'key_rn', 13: 'key_salaire', 14: 'key_transports_expeditions',}
label2color = {"key_achats_marchandises": "blue", "key_actif_circulant": "green", "key_actif_immobilise": "orange", "key_ca": "red", "key_charges_sociales": "purple", "key_date_cloture": "cyan", "key_dette": "magenta", "key_disponibilites": "yellow", "key_dotations_immobilisations": "blue", "key_impots": "green", "key_passif_circulant": "orange", "key_resultat_exploitations": "red", "key_rn": "purple", "key_salaire": "cyan", "key_transports_expeditions": "magenta",}
def unnormalize_box(bbox, width, height):
return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ]
def iob_to_label(label):
return label
def process_image(image):
image = Image.open(image).convert("RGB") print(type(image)) width, height = image.size
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
print(predictions)
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
print(true_predictions)
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction)
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
process_image("bilans_842953788_2019-02-28_C_2020-01-31_page_5.png")