I'm trying to run a program in matlab to obtain the direct and inverse DFT for a grey scale image, but I'm not able to recover the original image after applying the inverse. I'm getting complex numbers as my inverse output. Is like i'm losing information. Any ideas on this? Here is my code:
%2D discrete Fourier transform
%Image Dimension
M=3;
N=3;
f=zeros(M,N);
f(2,1:3)=1;
f(3,1:3)=0.5;
f(1,2)=0.5;
f(3,2)=1;
f(2,2)=0;
figure;imshow(f,[0 1],'InitialMagnification','fit')
%Direct transform
for u=0:1:M-1
for v=0:1:N-1
for x=1:1:M
for y=1:1:N
F(u+1,v+1)=f(x,y)*exp(-2*pi*(1i)*((u*(x-1)/M)+(v*(y-1)/N)));
end
end
end
end
Fab=abs(F);
figure;imshow(Fab,[0 1],'InitialMagnification','fit')
%Inverse Transform
for x=0:1:M-1
for y=0:1:N-1
for u=1:1:M
for v=1:1:N
z(x+1,y+1)=(1/M*N)*F(u,v)*exp(2*pi*(1i)*(((u-1)*x/M)+((v-1)*y/N)));
end
end
end
end
figure;imshow(real(z),[0 1],'InitialMagnification','fit')
There are a couple of issues with your code:
You are not applying the definition of the DFT (or IDFT) correctly: you need to sum over the original variable(s) to obtain the transform. See the formula here; notice the sum.
In the IDFT the normalization constant should be
1/(M*N)(not1/M*N).Note also that the code could be made mucho more compact by vectorization, avoiding the loops; or just using the
fft2andifft2functions. I assume you want to compute it manually and "low-level" to verify the results.The code, with the two corrections, is as follows. The modifications are marked with comments.
Now the original and recovered image differ only by very small values, of the order of
eps, due to the usual floating-point inaccuacies: