Python Pandas- Dataframe from Nested JSON

48 views Asked by At

I am trying to normalize a nested JSON file in pandas.
I am unable to get the ab_id column in the beginning as observed in the current output screenshot.
Additionally, since if I remove record prefix from my code, I am seeing an error and if I add it it generates a couple of columns which are empty.

The current and expected output is attached in the screenshot below:
enter image description here

Code used currently:

df=pd.json_normalize(data=response['val'],record_path=['activity'],meta=['msn','iis','ica','iada'],errors='ignore', record_prefix='_')

JSON file:

{
   "id":"ijewiofn23441312223",
   "val":[
      {
         "ab_id":"ab_123",
         "activity":[
            {
               "msn":"acpfile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            },
            {
               "msn":"adefile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            }
            }
         ]
      },
      {
         "ab_id":"ab_421",
         "activity":[
            {
               "msn":"adbfile_source_conn",
               "iia":true,
               "ica":true,
               "iada":false
            },
            {
               "msn":"aile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            }
            }
         ]
      }
   ]
}

Can someone please help out?
Thanks so much in advance.

3

There are 3 answers

0
Сервер Чауш On BEST ANSWER
import pandas as pd
from pandas import json_normalize

data = {
    "id": "ijewiofn23441312223",
    "val": [
        {
            "ab_id": "ab_123",
            "activity": [
                {
                    "msn": "acpfile_source_conn",
                    "iia": True,
                    "ica": False,
                    "iada": False
                },
                {
                    "msn": "adefile_source_conn",
                    "iia": True,
                    "ica": False,
                    "iada": False
                }
            ]
        },
        {
            "ab_id": "ab_421",
            "activity": [
                {
                    "msn": "adbfile_source_conn",
                    "iia": True,
                    "ica": True,
                    "iada": False
                },
                {
                    "msn": "aile_source_conn",
                    "iia": True,
                    "ica": False,
                    "iada": False
                }
            ]
        }
    ]
}
df = pd.json_normalize(data['val'], record_path=['activity'], meta=['ab_id'])
df = df[['ab_id'] + [col for col in df.columns if col != 'ab_id']]
df.columns = ['id'] + df.columns[1:].tolist()

print(df)
0
Andrej Kesely On

You can try to use json module and construct the DataFrame manually:

import json

with open("data.json", "r") as f_in:
    data = json.load(f_in)

df = pd.DataFrame(
    [{"ab_id": v["ab_id"], **a} for v in data["val"] for a in v["activity"]]
)

print(df)

Prints:

    ab_id                  msn   iia    ica   iada
0  ab_123  acpfile_source_conn  True  False  False
1  ab_123  adefile_source_conn  True  False  False
2  ab_421  adbfile_source_conn  True   True  False
3  ab_421     aile_source_conn  True  False  False

Contents of data.json:

{
   "id":"ijewiofn23441312223",
   "val":[
      {
         "ab_id":"ab_123",
         "activity":[
            {
               "msn":"acpfile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            },
            {
               "msn":"adefile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            }

         ]
      },
      {
         "ab_id":"ab_421",
         "activity":[
            {
               "msn":"adbfile_source_conn",
               "iia":true,
               "ica":true,
               "iada":false
            },
            {
               "msn":"aile_source_conn",
               "iia":true,
               "ica":false,
               "iada":false
            }

         ]
      }
   ]
}
0
Timeless On

There is two extra } in your json example. Also, this one doesn't match the I/O images.

But you can still try this :

df = pd.json_normalize(response["val"], "activity", "ab_id")
​
# if columns-order is important
df = df[np.roll(df.columns, 1)]

​ Output :

print(df)

    ab_id                  msn   iia    ica   iada
0  ab_123  acpfile_source_conn  True  False  False
1  ab_123  adefile_source_conn  True  False  False
2  ab_421  adbfile_source_conn  True   True  False
3  ab_421     aile_source_conn  True  False  False